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THE TODA MOLECULE EQUATION AND THE e-ALGORITHM

ATSUSHI NAGAI, TETSUJI TOKIHIRO, AND JUNKICHI SATSUMA

ABSTRACT. One of the well-known convergence acceleration methods, the
e-algorithm is investigated from the viewpoint of the Toda molecule equa-
tion. It is shown that the error caused by the algorithm is evaluated by means
of solutions for the equation. The acceleration algorithm based on the discrete
Toda molecule equation is also presented.

Discrete integrable systems play important roles in the field of numerical anal-
ysis. Matrix eigenvalue algorithms ([11], [19], [20]) and convergence acceleration
methods ([1], [14], [15]) are typical examples. We here focus our attention mainly
on the convergence acceleration methods and investigate both qualitatively and
quantitatively their features from the viewpoint of discrete integrable systems. In
particular, we show that there is a strong relation between the e-algorithm and the
discrete Toda molecule equation.

Let us first consider the equation of motion given by

2
“Q = _—e(@-Q1)
2 )
dt
2
(1) ddgn = —e (@nu+17Qn) 4 o= (Qn=Qn-1) (n=1,2,...,N—1),
d*Qn = ¢ (@v-Qn-1)
5 .
dt
Equation (1) is obtained by imposing the formal boundary condition
(2) Qo = —00, QN1 =00

in the Toda lattice equation [21] and is also called the Toda molecule equation.
Owing to its boundary condition (2), each particle moves freely and the distance
between two neighboring particles becomes infinite as t — oo. Under Flaschka’s
change of variables [7],

1 Qnt1— Q@n _ 1l 1dQ
(3) an = §exp (—————2 y bn = §Qn RCWTE
equation (1) is rewritten in the following matrix differential equation,
dX
4 — =[X,B
) — = x.B],
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where
i b1 al O
a1 bg ag
(5) X(t) = az o ,
byv_1 an—_1
| 0 an—1 by
r 0 a1 O
—ay 0 as
(6) B(t) = —a9
. 0 an—1
L 0 —aN_—1 0

In 1982, Symes [20] pointed out that the time evolution of the Toda molecule
equation is equivalent to the iteration of the QR algorithm. In detail, if the matrix
e~ X has the QR decomposition

(7) e XM = Q()R(t),
then the relation
(®) R($)Q() = e~ X(¢+D

holds. This equivalence is also interpreted as follows. Since each particle moves
freely, the quantities a,(t) tend to zero as ¢ — oo, which is nothing but diagonal-
ization of the matrix X (¢) in the QR algorithm. This may give one reason for which
the Toda molecule system and the QR algorithm coincide even though they have
different backgrounds.

Can we give a similar interpretation with respect to convergence acceleration
methods, which have been pointed out to relate with discrete integrable systems?
The purpose of this paper is to establish a relation between the e-algorithm and
the Toda molecule equation, to give a physical reason for convergence acceleration
from the equation, and to estimate quantitatively the error caused by the algorithm
by means of the solution for the equation.

The e-algorithm

9) el =0, ™ =S, (€07, =TT (Y — ey =1

was first proposed by Wynn [25] as a convergence accelerator for a given sequence
{Sm} and is one of the most powerful acceleration schemes. It should be noted
that there had already been pioneering works by Wynn ([26], [27], [28], [29], [30])
before soliton equations were actively studied. He derived many semi-discrete soli-
ton equations by considering infinitesimal analogues of lorenze algorithms, which he
called confluent forms, and described their interesting properties which may be de-
duced from those of the algorithms themselves. One of them, known as a confluent
form of the e-algorithm, is given by

(10) (En+1(t) = €n-1(D))én(t) = 1.

In terms of soliton theory, equation (10) reduces to the Bécklund transformation
of the Toda molecule equation (1),

(11) Nn(t) = Nn(t) (Nn—l(t) - Nn+1(t))
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through dependent variable transformation,
(12) N (t) = én(t)ént1(2).

Equation (11) is also called the Lotka-Volterra equation ([9], [10]). The e-algorithm
itself is considered as an integrable discretization of the KdV equation by taking
an appropriate continuous limit of both discrete variables m and n ([15], [14]).

Since the e-algorithm (9) is regarded as a full discrete equation, here we consider
the time discrete version of the Toda molecule equation [11],

I(m)lvnm) _ I£Lm+1)v7§m+1) ‘
13 ’
(13) I(m+1) Wy ym),

It should also be noted, as was pointed out by Watkins and Elsner [24], that
Rutishauser [17] had already derived the Toda molecule equation (1) before Toda by
considering an infinitesimal analogue of equation (13). Equation (13) is well known
as the QD algorithm or the LR algorithm in the field of numerical analysis. It also
finds many more applications in the field of engineering and mathematics ([12], [13]).
The quantities I\™ and V,{™ correspond to Qn(t) and exp(—(Qny1(t)—Qn(t))), re-
spectively, and the variable m stands for the time variable. They are given by ([10],
(11])

(m) _(m+1 (m) _(m+1)
(14) m = M__) v = Zﬁﬁnﬁl_,
Tn m) 7(1’m1|—1) 7_7(1'771)7_7(1'7714—1)
(15) ™ = > V(P ,P,)Cy P Cy, P,
1< << <N
1 1 1
P;, P, - P
(16) V(Pipp’iza"',Pik): . . . s
Piklz—l Pr,;k;_l . Pr,;i_l
where Py, Ps,--- ,Py and (Cy : Cy : --- : Cy) € PV~! are 2N — 1 independent
parameters determined by independent initial datal VI(O) . VJS,O) i (0), <o I 5\?).
The parameters Py, P, .-+ , Py are eigenvalues of the NV x N matrix,
(17)
[ 1O 1 0 1
IfO)Vl(O) Iéo) + Vl(O) 1
0 0)1 (0
.. . 1
0 0 0) 0
i 0 I()V()l I( +V()
and satisfy, without loss of generality, the inequalities,
(18) |P1| > |Py| > -+ > |Pn|,
ITwo sets of parameters (Py,--- ,Pyn,C1:C2:---: Cy) and (Vl(o),~-~ ,Vjsjoll,lio),n' ’IJ(\?))

are related by a simultaneous system of 2N — 1 independent algebraic equations.
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when IJ(O) Vj(o) # 0 holds for any j = 1,2,--- ,N — 1. We see from equation (14)
that

(19)
P, P m
(m) — n n+1
I Pn+0<max[Pn_1, P, ] )—)Pn,
(20)
Cn+1H(Pn+1 - R)Q m m
vim = 121_1 P;H) +0 (max [?LH , P;,H] ) —0,
n n—1 n
Co P [[ (P — P)?
=1

as m — oo. Equation (20) shows that each quantity V,Em) converges exponentially,
or in the order of O ((Pn+1/Pn)™), to zero as m — oo.

The establishment of a relation between the e-algorithm and the discrete Toda
molecule equation consists of two parts: first, the e-algorithm and the Padé approx-
imation and second, the discrete Toda molecule equation and continued fractions.

First of all, we consider the Padé approximation and its relation to the e-algo-
rithm. Let

oo
(21) f(@) =)’
=0
oo
be a given formal power series such that an infinite series f(1) = Z c; is a conver-
=0

gent, necessary condition which is given by

(22) m (Jen))/™ < 1.

Padé approximation of f(z) consists in finding a rational function RI"™/"(z) with
the numerator of the m-th degree and the denominator of the n-th degree,

_ataiz+ax®+ - +anz™ _ PM/7(g)

23 RIm/m] =
(23) (@) bo + b1z + baa? + - + bz Q/7(z)’
such that
(24) Q™" () f(z) — PI™/™(z) = O(a™+H)
holds. Putting by = 1, we see that equation (24).is equivalent to the following Padé
equations for (ag,a1,...,a,) and (b1, b2,...,by):
(25)
Cm—n+1 Cm—n4+2 Cm bn Cm+1
Cm—n+2 Cm—n+3 " Cm+1 bp—1 Cm+2

Cm—n+3 Cm—nta " Cm+-2 bn—2 — Cm43

Cm Cm+41 vt Cmn—1 by Cm+4n
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ap = Co,
a; = c1+bico,
as = cg+ bicy + baco,

(26)
min(m,n)

Qm = Cm+ E biCm—;.
i=1

Solving linear equations (25) and (26), we have a Padé approximant R(™/"(z) for
f(z). We see from Cramer’s formula that the numerator and the denominator of
the Padé approximant RI™/™)(z) are expressed as the following determinant form:

Cm—n+1 Cm—n+2 e Cm+1
Cm—n+2 Cm—n+3 coe Cm+2
(27) P"/"(e) = : ;
Cm Cm+1 e Cm+n
z;';?)n cixn+i Z?;Bnﬂ cixn+i—1 - Z:;o cia:i
Cm—n+1 Cm-n+2 “°° Cm+l
Cm—n+2 Cm—-n+3 “°° Cm+2
(28) Q/"(z) = : :
Cm Cm+1 e Cm+n
™ 1 cen 1

Substitution of = 1 in equations (27) and (28)-gives

(29)
Sm—n Sm—n—l—l . Sm
Sm—n+1 Sm—n+2 e Sm+1
Rimial 1y = 2700 Sm___Smiz 0 Smn
Q[m/n] (1) A2S'm,—n A2Sm—n+1 e A2Sm—l ’
A2Sm—n+1 A2Sm—n+2 e Asz
A28, 4 A28, e A28 in o
where S,, is a summation of ¢;’s,
(30) Sm =Y ci.
i=0

and A is the forward difference operator given by Aay = ag+1 — ai. Equation (29)
immediately reminds us of the Shanks transformation [18]. In fact, the Padé ap-
proximation and the e-algorithm are related by ([2], [8])

(31) ety = RIME/m(1),
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Next we discuss the relation between the Padé approximation and the discrete
Toda molecule equation via continued fractions.? Let us begin with the following
theorem.

Theorem 1 (Perron [16, pp. 447-459]). Let
(32)
T (x) = {R™/) (), RI™+1/% (), R/ (), R/ (),
RI™2/2(g) . RIm+n/nl(g), RIm+n+1/ml() .} (m > 0)

oo

denote a sequence of Padé approzimants for f(z) = Zcia:i, any two consecutive
=0
elements of which are different. Then there exists a continued fraction,

ds |
| 1

Cmp1z™ ! | dox|

B

(33) cotcazr+--+epz™ + + -

such that the n-th approzimant of equation (33) is equal to the
(n +1)-st term of Tp(z) for any n > 1.

Let gm(xz) be a continued fraction whose n-th approximant is equal to the
(n + 1)-st term of T, (x) for any ». We write g, () as follows:

m+1 (m+1)
(34)  gm(x) = cotearrt--tcme™ + |Cm+lai | - |I1 1 a:'
Vl(m+1)x| ~ I§m+1)x' ~ Vz(m+1)$' ) Iémﬂ)x' )
_| 1 | 1 | 1 [ 1

Taking the even part of equation (34), we have another continued fractional repre-
sentation for g, (z),

(35)
+1
gm(T) =co+crz+ - -cpmz™ + | - Il(m+1)x
—Il(m+l)vl(m+l)$2 | _I2(m+1)‘/2(m+1)x2 |

+ + T
‘ 1— (IQ(m-I—l) + ‘/1(m+1))x | 1— (I:Em-l—l) + ‘/2(m+1))x

In the same way, we may consider a continued fraction,

m (m)
(36) gm_1(z) = co+clx+,,,+cm_1wm-1+lcmai |_|.r1 1x|
VM| 7] vime| 1al
T T 1 1

2Elementary properties of continued fractions are given, for example, in [16] and [23].
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the n-th approximant of which equals the (n + 1)-st term of T,,_1(z). Taking the
odd part of equation (36), we have

e I{™ g1 |
(37)  gm-1(x) = cot+caz+---cpz™+
_EPVmg2 | iy |

11— (@™ + vz 1 - (™ + Vi

The n-th approximants of equations (35) and (37) are equal to (2n + 1)-st term of
T (z) and (2n+ 2)-nd term of T,,,—1(x), respectively, both of which is nothing but
RI™+n/n](z). Therefore, two continued fractions (35) and (37) are equivalent. This

leads to the following relation between the quantities {I{™} and {V;{™},

I,,(IT)]V'n(.m) _ I’,(lm—l—l)VrSm—I—l),
(38) W+ v = I oy
n n— )
‘/O(m) =0, I](_m) = Cm+1/Cm,

which is nothing but the discrete Toda molecule equation, or equivalently the QD or
LR algorithm. It should be noted that the solutions (14) are recovered by putting

N
(39) Cm =Y CiP"
i=1

in equation (38). In particular, the quantities © and V{9 are related to an initial

sequence {c¢,,} by

Co C1 o Cp—2 C1 C2 ce Cn
C1 C2 . Cp—1 C2 C3 0 Cntl
40 I&O) _ Cn—2 Cp—1 *** Copn—4 Cn Cntl - Con—1
n k]
Co C1 ctr Cp—1 C1 C2 -+ Cp-1
c]. c2 .. cn c2 C3 . Cn
Cn—2 Cp—1 *'° Con—2 Ch—1 Cn *°° C2p-3
Co C1 ce Cn, C1 Ca =+ Cp-1
C1 C2 ctr Cpgd C2 c3 - Cn
Cn Cpn4+1 - Con Ch—1 Cn +*° Con-3
41 VO =
Co Cci ** Cp—1 C1 C2 cee Cn

Cc1 Co RN Cn, C2 C3 e Cn—l—l

Ch—1 Cp - C2pn—2 Cn Cpnt1 *°° Cop—1
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We see from the above discussion that the formal power series f(z) = co+c1z+
cox? + c3xz® + - - has a continued fractional representation,

- e | B I1(m+1)x| _ Vl(m+1)‘7‘"
(42) co+cix+--+emz™ + | . 1 1
I R I G e I
I I ’

and that each coefficient is governed by the discrete Toda molecule equation.
Putting £ = 1 in equation (42), we have a continued fractional representation
for an infinite series,

o) I(m+1) V(m+1)
(43) Zci = Co+c1+~~+cm+cm+1l_ 1 ‘_ 1 |
i=0 I 1 | 1 l 1
_I§m+1) | B ym | ) )| B ymHD | o
1 [ 1 |1
We again consider the discrete Toda molecule equation (13), in which the quan-

tities V,gm) decay exponentially to zero as m — oco. If we approximate V,Sm‘H) =0

in equation (43) for a certain n > 1, we have one approximation for the infinite
o0

series Zci. The approximation of émﬂ) = 0 is equivalent to taking the 2n-th

i=0
convergent of the continued fraction (43). From Theorem 1, the 2n-th convergent
of equation (43) equals (2n+1)-st term of the sequence T}, (1), namely R[™+7/71(1).
Combining the above result with equation (31), we arrive at the following rela-
tion® between the e-algorithm (9) and the discrete Toda molecule equation (13):

(m+1) (m+1) (m+1)
m)  _ empr | L"V| VM|
(44) €2n+1 - Sm+| 1 I 1 I 1 | 1
V2(m+1) ' I§m+1) ' V3(m+1) | L(:n+1) |
T oy T

It should be noted that approximation of I/l(m+1) = 0 in equation (43) gives the

well-known Aitken acceleration. Hence, we have established the relation of the
e-algorithm to the discrete Toda molecule equation (13).

Wiynn'’s result on confluent forms of the e- and QD algorithm can also be applied
to equation (44). Employing the same dependent variable transformations as in
[26],*

(45) m = t/At

(46) Sm = f(@)

(47) cmy1 = flt+At) - f(t)
(48) esnly = eampa(t)

(49) ™ = (I(t) —1)/At
(50) VM = Vo(t)/(At)?

3See also Bauer [3] and Cuyt [6].
4Variables n, I (t) and Vi, (t) correspond to r, Q-(t) and Er(t), respectively, in Wynn’s papers.
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and taking the limit At — 0, we have a confluent analogue of equation (44),
(51)

fo |
| —1(t)

“Vi(t)|  —Va(t)]
| —L(t) |-

- n—l(t)l
| _In(t) .

eania(t) = (1) + + bt

Now we can explain physically the reason for convergence acceleration from the
viewpoint of the Toda molecule equation just as diagonalization of matrices in the
QR algorithm. We see from equation (44) that the error between the quantities
eg,?il and the limit So, = n}gnmSm is estimated as

n+1 n
(52) ety = ool 2 [T 2V T ViV,
i=1 i=1

or equivalently,
|5g773r1 — So

> Uy mD),
I“:g:ll — Soo

(53) n+1 n

)

As is mentioned above, each quantity V,Sm , which corresponds to

exp(—(@n+1(t) — Qn(?)))

in equation (1), decays exponentially to zero as m — oo as does the left hand
side of equation (53), which matches exactly the definition of convergence acceler-

ation. Furthermore, we can quantitatively estimate the error Isg::_)l_l — Soo|. From
equations (19), (20) and (44), we find that the estimation is expressed by

(54)
eS| — Sl

Cn+1Pn+1H(Pn+1 - P)?

= i=1 Pri1 m Pri2 "
~ o (52) o((3

aJla-p)?
=1

Cn+1H(Pn+1 - P)?
=1

=—= P2 + O (max[Py41P2/ Py, Pyya]™) .

[[a-r)

i=1

Under the assumptions given by equations (18), (22) and (39), we see that inequal-
ities,

(55) —1<P <1, -1<P<1(j>2)

hold. It is interesting to note that the case P, = 1 is exceptional in the sense that

the e-algorithm cannot accelerate convergence of logarithmic sequences.
It is also shown from equation (44) that the discrete Toda molecule equation (38)

m
also serves as a convergence accelerator of a given sequence S,, = E c;. We
=0
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construct sequences A;"” and B,(Lm) according to the following algorithm:

step 1. Agm) — S, B((,m) —1,
Agm) ~ Om+1, B§m) — ]-a

A A e

step 2. . In<2
P\ B o B, s,
i
m m m m )
Bynt1 = By —Va B3n’y
where the quantities (I,(zm), V,Em)) are determined by recurrence relations (38). The
sequence {A,(zm) /B,sm)} o1s converges more rapidly to the limit S, as n —

oo than the original sequence. Even though this procedure is equivalent to the

e-algorithm (9), its merit is that it does not involve singularities, while the quantities

{™ diverge in the e-algorithm.

The Toda molecule equation, though it may not have attracted attention in a
physical sense, stands for a dynamical system which converges to a diagonal matrix
and appears in other fields of mathematical engineering. In the future we should
study such molecule-type integrable systems, which are expected to find many
applications.
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