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THE TODA MOLECULE EQUATION AND THE c-ALGORITHM 

ATSUSHI NAGAI, TETSUJI TOKIHIRO, AND JUNKICHI SATSUMA 

ABSTRACT. One of the well-known convergence acceleration methods, the 
?-algorithm is investigated from the viewpoint of the Toda molecule equa- 
tion. It is shown that the error caused by the algorithm is evaluated by means 
of solutions for the equation. The acceleration algorithm based on the discrete 
Toda molecule equation is also presented. 

Discrete integrable systems play important roles in the field of numerical anal- 
ysis. Matrix eigenvalue algorithms ([11], [19], [20]) and convergence acceleration 
methods ([1], [14], [15]) are typical examples. We here focus our attention mainly 
on the convergence acceleration methods and investigate both qualitatively and 
quantitatively their features from the viewpoint of discrete integrable systems. In 
particular, we show that there is a strong relation between the c-algorithm and the 
discrete Toda molecule equation. 

Let us first consider the equation of motion given by 

d2Q1 - -e-(Q2-Ql) 
dt2 

(1) d2Q - = e- (Qn+l-Qn) + e-(Qn-Qn-1) (n= 1,2,I... ,N -1), dt2 
d2QN _ e-(QN-QN-1) 

dt2 

Equation (1) is obtained by imposing the formal boundary condition 

(2) QO = -0?, QN+1 = oo 

in the Toda lattice equation [21] and is also called the Toda molecule equation. 
Owing to its boundary condition (2), each particle moves freely and the distance 
between two neighboring particles becomes infinite as t - oo. Under Flaschka's 
change of variables [7], 

1 t Qn+1?-Qn 1 1dQ 
(3) an exp - bn = 2Qn 2 dt 

equation (1) is rewritten in the following matrix differential equation, 

dX 
(4) dt [XI,B]I 
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where 
ab al 0 
a1 b2 a2 

(5) X(t) a2 

bN-1 aN-1 

LO aN-1 bN _ 

o a 1 0~ 
-a1 0 a2 

(6) B(t) - a2 

0 aN-l 
O -aN-l 0 

In 1982, Symes [20] pointed out that the time evolution of the Toda molecule 
equation is equivalent to the iteration of the QR algorithm. In detail, if the matrix 
e-x(t) has the QR decomposition 

(7) e-X(t) - Q(t)R(t), 

then the relation 

(8) R(t)Q(t) = e-X(t+?) 

holds. This equivalence is also interpreted as follows. Since each particle moves 
freely, the quantities an(t) tend to zero as t -* oo, which is nothing but diagonal- 
ization of the matrix X(t) in the QR algorithm. This may give one reason for which 
the Toda molecule system and the QR algorithm coincide even though they have 
different backgrounds. 

Can we give a similar interpretation with respect to convergence acceleration 
methods, which have been pointed out to relate with discrete integrable systems? 
The purpose of this paper is to establish a relation between the c-algorithm and 
the Toda molecule equation, to give a physical reason for convergence acceleration 
from the equation, and to estimate quantitatively the error caused by the algorithm 
by means of the solution for the equation. 

The c-algorithm 

(9) E 
(m) = 0, c(m) - s__ (g(l- _(rn+1))(E(m?1) 

- 
E(m)) 1 

was first proposed by Wynn [25] as a convergence accelerator for a given sequence 
{Sm} and is one of the most powerful acceleration schemes. It should be noted 
that there had already been pioneering works by Wynn ([26], [27], [28], [29], [30]) 
before soliton equations were actively studied. He derived many semi-discrete soli- 
ton equations by considering infinitesimal analogues of lorenze algorithms, which he 
called confluent forms, and described their interesting properties which may be de- 
duced from those of the algorithms themselves. One of them, known as a confluent 
form of the c-algorithm, is given by 

(10) (En+l(t) - En-l(t))En(t) = 1. 

In terms of soliton theory, equation (10) reduces to the Backlund transformation 
of the Toda molecule equation (1), 
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through dependent variable transformation, 

(12) Nn (t) = en (t)en+l (t) 

Equation (11) is also called the Lotka-Volterra equation ([9], [10]). The c-algorithm 
itself is considered as an integrable discretization of the KdV equation by taking 
an appropriate continuous limit of both discrete variables m and n ([15], [14]). 

Since the c-algorithm (9) is regarded as a full discrete equation, here we consider 
the time discrete version of the Toda molecule equation [11], 

r j(m) V(m) T(m+l?)(m+l) (13) In+j n -L n n v- ( 13)y I {(m+ i)T(m) 
- V(m) _ V(m+l) 

It should also be noted, as was pointed out by Watkins and Elsner [24], that 
Rutishauser [17] had already derived the Toda molecule equation (1) before Toda by 
considering an infinitesimal analogue of equation (13). Equation (13) is well known 
as the QD algorithm or the LR algorithm in the field of numerical analysis. It also 
finds many more applications in the field of engineering and mathematics ([12], [13]). 
The quantities T(m) and E(m) correspond to Qn(t) and exp(-(Qn+ 1(t)-Qn(t))), re- 
spectively, and the variable m stands for the time variable. They are given by ([10], 
[11]) 

(m) (m+ 1) (m) (m+ 1) 
(14) I(m) ( (-n1) v(m) - (n)+1n+1) n - ()(+)v n (m) (m+l) v 

(15) T7(m) = 3 V(Pil ... Pin) il ... Cin PiT 
1 <il < *.*.* < in*<N 

Pi, pi 2 
.. 

Pi k 

(16) v(Pi Pi2v , ik. ) : : Pi 

pk-1 p-1 pk-1 

where P1,P2, -. ,PN and (Cl: C2 O: CN) E pN-1 are 2N -1 independent 

parameters determined by independent initial data1 () , V__)_I(?) INO) 
The parameters P1, P2, N, P are eigenvalues of the N x N matrix, 

(17) 
- 

I(?) 1 0 
1~~~~~~~ 

I1 V1 I2 + V1 1 

X(O) = I2) V2 (?) . . 

? 0 IN)_0 <?1 ) + VN1 )1 
and satisfy, without loss of generality, the inequalities, 

(18) IP11 > |P21 > ...> IPNI, 

1Two sets of parameters (Pi,** PN, Cl : C2 CN) and (Vj() 1. I(0) * O)) 
are related by a simultaneous system of 2N - 1 independent algebraic equations. 



1568 ATSUSHI NAGAI, TETSUJI TOKIHIRO, AND JUNKICHI SATSUMA 

when I(i) 0v0) 0 holds for any] 1,2, ,Nj-1. We see from equation (14) 
that 

(19) 

n ( [ ~~Pn P.n1 ] In(mVp 
?O( 0max Pn1 

P+1pn 

(20) 
n 

V(M) - i=1 (Pn?1 + ?O(maxKPn+1 Pn+21 o 0 n-1 Pn / [Pnl' Pn 
Cn nP (Pn2-Pi P 

i=1 

as m -* oo. Equation (20) shows that each quantity Vn(m) converges exponentially, 
or in the order of 0 ((Pn+l/Pn)m), to zero as m -* oo. 

The establishment of a relation between the c-algorithm and the discrete Toda 
molecule equation consists of two parts: first, the c-algorithm and the Pade approx- 
imation and second, the discrete Toda molecule equation and continued fractions. 

First of all, we consider the Pade approximation and its relation to the c-algo- 
rithm. Let 

00 

(21) f(x) Z cixi 
i=o 

00 

be a given formal power series such that an infinite series f (1) =E ci is a conver- 
i=o 

gent, necessary condition which is given by 

(22) lim (IcmI) /m < 1. 
m-oo 

Pade approximation of f (x) consists in finding a rational function R[m/n] (x) with 
the numerator of the m-th degree and the denominator of the n-th degree, 

(23) R[m/n] (X) = ao + alx + a2X2 +... amxm _ p[m/n] (X) 
bo + blx + b2x2 + + bn Xn Q[m/n] (x) 

such that 

(24) Q[m/nr](x)f(x) - p[m/n](x) = O(xm+n+l) 

holds. Putting bo 1, we see that equation (24) is equivalent to the following Pade 
equations for (ao,a,,... ,am) and (b1,b2, ...bn) 

(25) 

Cm-n+1 Cm-n+2 ... Cm bn Cm+1 

Cm-n+2 Cm-n+3 ... Cm+1 bn- 1 Cm+2 

Cm-n+3 Cm-n+4 Cm+2 bn-2 _ Cm+3 

Cm Cm+l ... Cm+n-1 Cm?+n) 
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a, =cl + bicol 

a2 C2?+ bic + b2Co, 

(26) 
min(m,n) 

am Cm+ bicm-i. 

Solving linear equations (25) and (26), we have a Pade approximant R[m/n] (x) for 
f (x). We see from Cramer's formula that the numerator and the denominator of 
the Pade approximant R[m/n] (x) are expressed as the following determinant form: 

Cm-n+1 Cm-n+2 cm+1 

Cm-n+2 Cm-n+3 Cm+2 

(27) p[m/n] (X) - 

Cm Cm+1 ... Cm+n 
zmnin+i mn+1 nCiX- 1 ... Zm i 

Cm-n+1 Cm-n+2 *-- cm+1 

Cm-n+2 Cm-n+3 ... Cm+2 

(28) Q[m/n] (x) 

Cm Cm+1 
... 

qm+n 

xn xn-1 1 

Substitution of x 1 in equations (27) and (28)-gives 

(29) 

Sm-n Sm-n+1 ... Sm 

Sm-n+1 Sm-n+2 ... Sm+1 

R[nm/n] (1) - p[m/]() Sm Sm+1 Sm+n 
Q[m/n](1) - \2Sm-n A2Sm-n?i A2Smg1 

/A2Sm-n+1 A2 Sm-n+2 ... A2Sm 

A2Sm_l A2Sm A2 Sm+n-2 

where Sm is a summation of ci's, 

m 

(30) Sm = ECi,. 
i=o 

and A is the forward difference operator given by Aak = ak+1 - ak. Equation (29) 
immediately reminds us of the Shanks transformation [18]. In fact, the Pade ap- 
proximation and the &-algorithm are related by ([2], [8]) 

(31) (mi - R[m+n/n] (1). 
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Next we discuss the relation between the Pade approximation and the discrete 
Toda molecule equation via continued fractions.2 Let us begin with the following 
theorem. 

Theorem 1 (Perron [16, pp. 447-459]). Let 

(32) 

Tm (x) - {R[m/O] (x), R[m+l/O] (x) , R[m+l/l] (x) , R[m+2/l](x), 

R[m+2/2] (x),. R[m+n/n] (x), R[m+n+l/n] (x), .. } (m > 0) 

00 

denote a sequence of Pade approximants for f (x) = Ecix', any two consecutive 
i=o 

elements of which are different. Then there exists a continued fraction, 

Cm?lXm+lj d2X~ d3X~ 
(33) CO + ClX + + CmXm + 1 I 1 +1d2x | d +x | 

such that the n-th approximant of equation (33) is equal to the 
(n + 1)-st term of Tm(x) for any n > 1. 

Let gm(x) be a continued fraction whose n-th approximant is equal to the 
(n + 1)-st term of Tm(x) for any xi. We write gm(x) as follows: 

(34) gm(X) CO + clx + cxm +1(+l) 

_V(M+ x | _ I2 x | _ V2 x |_I3 +lx _... 
I 1 1- 1 1 1~ 1 1 

Taking the even part of equation (34), we have another continued fractional repre- 
sentation for gm(x), 

(35) 

gm(X) = CO + CX CmX? + C I 
1 - j(m+l)x 

_I(m+l)V(m+l)X 2 1 I(m+l)V(m+l) x2 

(I 
(fm+l) 

+ V-(M+l))X ((m+l) + V(m+l)) 

In the same way, we may consider a continued fraction, 

(36) gm-1(X) = co+clx?+ ?+CmlXm-l + CmX _1) 

1 1 ~ 1 1 ~ 1 1 1 

2Elementary properties of continued fractions are given, for example, in [16] and [23]. 
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the n-th approximant of which equals the (n + 1)-st term of Tmi1 (x). Taking the 
odd part of equation (36), we have 

CIm) M+ 11 

(37) gm-i(X) = CO?ClX?".CmXm? 1m ()x+ 
1 - (I(m) + V(m))x 

_I2m) Vl(M) X2 | _I3M) V2(M) X2 | 
| 1-(I2m)?+ V2(m))X | 1-(IWm) + V3(m))X 

The n-th approximants of equations (35) and (37) are equal to (2n + 1)-st term of 
Tm(x) and (2n + 2)-nd term of Tmi1 (x), respectively, both of which is nothing but 
R[m+n/n] (x). Therefore, two continued fractions (35) and (37) are equivalent. This 
leads to the following relation between the quantities {In )} and {Vn(4m)} 

n I(m) Vn(m) = I+V) Vn(m+l) 
(38) < (m ) + V(m) = m+1) (M+1) 

t Vo(m) = O~ I(m) = CM+,/CM, 

which is nothing but the discrete Toda molecule equation, or equivalently the QD or 
LR algorithm. It should be noted that the solutions (14) are recovered by putting 

N 

(39) Cm -ZCiPim 
i=l1 

in equation (38). In particular, the quantities In(?) and Vn($) are related to an initial 
sequence {Cm} by 

CO C1 ... Cn-2 C1 C2 ... cn 

C1 C2 ... Cn-1 C2 C3 ... Cn+1 

(40) I(?) - C_2 Cn1 ... C2n-4 Cn Cn+1 C2n-1 
CO C1 Cn- 1 C1 C2 ... Cn-1 

C1 C2 ... cn C2 C3 ... cn 

Cn-2 Cn-1 C2n-2 Cn-1 Cn ... C2n-3 

Co. 1 C1 C2 ... Cn-1 

C1 C2 ... Cn+1 C2 C3 ... cn 

(41) V() - Cn Cn+1 
.. 

C2n Cn-1 Cn * 
... 

C2n-3 
CO C1 ... Cn-1 C1 C2 ... Cn 

Cl C2 ... Cn C2 C3 ... cn+1 

Cn-1 Cn m .. C2n-2 Cn Cn+1 *-- C2n-1 



1572 ATSUSHI NAGAI, TETSUJI TOKIHIRO, AND JUNKICHI SATSUMA 

We see from the above discussion that the formal power series f (x) = co + clx + 
C2X2 + c3x3 + has a continued fractional representation, 

(42) CO + clx + ?+ cmxm + Cmll 1m+t) VIl)| 

1(m+l) | V(m+l)- | I(m+l)x Vm+l)x 

I 1 1 11 1 1 1 

and that each coefficient is governed by the discrete Toda molecule equation. 
Putting x = 1 in equation (42), we have a continued fractional representation 
for an infinite series, 

(4) ZC = C? ??C ?Cm+1 I(m+l) V(M+l) (43) E Ci = Co + Cl + *''+ Cm + - 1 
] - 1 

i=O 1 1 1 
I(m+l) V(m+l) j(m+l) V(m+l) 

2_ _2 3_ 3 3 

I 1 1 11 1 1 1 

We again consider the discrete Toda molecule equation (13), in which the quan- 
tities V1(m) decay exponentially to zero as m -* oo. If we approximate V(m+l) = O 
in equation (43) for a certain n > 1, we have one approximation for the infinite 

00 

series E ci. The approximation of Vn(m+1) = 0 is equivalent to taking the 2n-th 
i=o 

convergent of the continued fraction (43). From Theorem 1, the 2n-th convergent 
of equation (43) equals (2n+ 1)-st-term of the sequence Tm (1), namely R[m+n/n] (1). 

Combining the above result with equation (31), we arrive at the following rela- 
tion3 between the c-algorithm (9) and the discrete Toda molecule equation (13): 

(in) Cm?1 | (m+l) V(M+l) 2Im+l) 
(44) +c 

1 2 
2n+1 1 I 1 1 1 

2 3 3 In(m+m 

It should be noted that approximation of V1 ) 0 in equation (43) gives the 
well-known Aitken acceleration. Hence, we have established the relation of the 
c-algorithm to the discrete Toda molecule equation (13). 

Wynn's result on confluent forms of the c- and QD algorithm can also be applied 
to equation (44). Employing the same dependent variable transformations as in 
[26] ,4 

(45) m - t/At 

(46) Sm f (t) 

(47) cm+1 - f(t + At) -f(t) 

(48) v2n+l - 2n+1 (t) 

(49) In(m) = (In(t)-l1)//t 

(50) Vn( n = V(t) /(/t)2 

3See also Bauer [3] and Cuyt [6]. 
4Variables n, In (t) and Vn (t) correspond to r, Qr (t) and Er (t), respectively, in Wynn's papers. 
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and taking the limit At -* 0, we have a confluent analogue of equation (44), 

(51) 

f (t) ? -1/(t) ?-V/2(t) _______ 

E2n+~~~ l-I,=f(t [_1 (t) I |-I2 (t) I, I(t) I -I (t) 

Now we can explain physically the reason for convergence acceleration from the 
viewpoint of the Toda molecule equation just as diagonalization of matrices in the 
QR algorithm. We see from equation (44) that the error between the quantities 

m2n)+1 and the limit SOO = lim Sm is estimated as 

n+1 n 

(52) &6- -M fJ I(m+l) jl V(m+l) 
i=ln+l -Soo Ii =l 

or equivalently, 

g2n+1- l _ I(m+l) V(M?) 

16;2n-+ oo l 

As is mentioned above, each quantity Vn(m), which corresponds to 

exp(-(Qn+ 1 (t) - Qn (t))) 

in equation (1), decays exponentially to zero as m -* oo as does the left hand 
side of equation (53), which matches exactly the definition of convergence acceler- 
ation. Furthermore, we can quantitatively estimate the error JE(m+1- ScJ. From 
equations (19), (20) and (44), we find that the estimation is expressed by 

(54) 

m)- SoocI E 2n+ 1 1 

n~~~ 
CTh+1fJ(Pph+1 p 

Cn+1 I l(Pn l 12 -Pi ) 

P+l P 12 ?0 (max [P7 P2/Pi v Pn+2]m) 
fJ (1 -P p)2 
i=l1 

Under the assumptions given by equations (18), (22) and (39), we see that inequal- 
ities, 

(55) -1<P?1, -1<Pj<1C(j 2) 

hold. It is interesting to note that the case P1 =1 is exceptional in the sense that 
the &-algorithm cannot accelerate convergence of logarithmic sequences. 

It is also shown from equation (44) that the discrete Toda molecule equation (38) 

n+1~~~~~~~~~~~~~~~~~i 

also serves as a convergence accelerator of a given sequence See,ha = ic. We 
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construct sequences A(m) and B(m) according to the following algorithm: 

step 1. A(m) < Sm, B(m) < 1, 

A(m) , Sm+,, B(m) 1, 

A(m) < A(m) Im+l)A(m) 
step 2. lB(m)- (Bnm) - A(m?)Bm) 

2n B2n-12n2 

A(m) < A(m) - V(m+)AA(m) 

B (m) B(in) - V,(mn?)B(mn) 2n+1 2n n 2n-1 

where~~~~~~~~~ 

B(m) 

qunite (T(m)Eml)(m 
where the quantities (I(m), VE.m)) are determined by recurrence relations (38). The 

sequence {Amn)/Bnm)} converges more rapidly to the limit SOO as n 

oo than the original sequence. Even though this procedure is equivalent to the 
c-algorithm (9), its merit is that it does not involve singularities, while the quantities 
E(m) diverge in the c-algorithm. 

The Toda molecule equation, though it may not have attracted attention in a 
physical sense, stands for a dynamical system which converges to a diagonal matrix 
and appears in other fields of mathematical engineering. In the future we should 
study such molecule-type integrable systems, which are expected to find many 
applications. 
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